Lavel swithon Eill

ABOUT COMPANY 3
APPLICATION OF LEVEL SWITCHES 4
FLOAT LEVEL SWITCHES 5
ACCESSORIES OF FLOAT LEVEL SWITCHES 12
MAGNETIC LEVEL SWITCHES 15

From the design...

...to the device adapted to the user's requirements

Level switch integrated with the testing device type ERH-01-06-3/CON-18/179

- marine version with IP66
-histeresis 30 mm
- diameter of the float Ф52
- flange JIS 5K 65A (SS 316L)

APLISENS S.A. is the leader amongst the domestic suppliers of applications in the scope of industrial control-measuring instrumentation. We produce a wide assortment of high quality devices for measurements of pressure, differential pressure, level and temperature used in many branches of industry.

Since 2008 when there was the fusion with CONTROLMATICA Ltd. Co., these devices were also widened by level switches ERH ${ }^{\circledR}$, and also by pressure switches ERP and temperature switches ERT. This offer covers also the electric actuators, pneumatics and many other industrial automation devices. All these are produced in the Plant in Ostrów Wielkopolski, Poland.

Experience in their manufacture, supported by the technology and confirmed by the Quality System Certificate ISO 9001:2015 issued by DNV GL - Business Assurance guarantee the highest quality of the offered devices. In addition to that, our clients can rely on technical assistance of the R+D Department and post-guarantee operation rendered by the factory service.

The switches can be applied first of all in the applications used in the marine branch. They have the approvals of the Certification Associations: BV, DNV-GL, LR and PRS. In addition to that, possibilities of application are extended by the Polish National Institute of Hygiene certificate (PZH) and the ATEX release for operation in the explosion risk zones.

> ERH ${ }^{\circledR}$ is protected with the trademark.

CERTYFIKAT SYSTEMU ZARZADZANIA

Cygriam,
Cygriam,
Nemkejaym potivierdzs sk, ze system zarzadzeva organkacji

APLISENS SPÓŁKA AKCYJNA

uL. Morelowe 7, 03-192 Warszawa, Polska
araz lokaleacji wymierionych w zäłacziku dolączomym do neniajsrego certyfikatu
cocinis wymagena normy Systemu Zarzadzorig)akónci
ISO 9001:2015
Certytikat obejmuje nastepujecy zakres:
Projehtowanie, wytwarzanie I spraedat prastwomilidow ciénienia I róznicy eiknieh, sond poziomu, crujnikéw temperatury, prastwornabow temperatury, przephywomierzy elektromagnetycanych i iweqzikowych, oporatury pomiarowej oraz urządzeni automatyki przemyshowej.

 Hinan surant

BUREAU VERITAS

Regyd's

Application of level switches

1 Float level switch in standard version with steady hysteresis of switching 10, 20 or 30 mm
2 Float level switch mounted from the top with hysteresis of switching in the scope of $32 \ldots .1350 \mathrm{~mm}$ (2000 mm in option)
3 Float level switch with Z-type arm, making possible the shift of switching point in relation to the already existing place of mounting
4 Magnetic level switch mounted from the top with 1, 2 or 3 switching points
5 Float level switch in standard version with testing device (screwed or welded)
6 Float level switch with possibility of switching hysteresis setting in the scope of $50 \ldots 250 \mathrm{~mm}$ or $100 \ldots 400 \mathrm{~mm}$

7 Float level switch designed for operation at full submersion
8 Magnetic level switch in mini version for places of limited space
9 Float level switch with L-type arm, making possible the mounting from the top and applying at places of limited space instead of level switch 2; in version ERH-xx-16.1 with IP68 protection degree signalling of the media in 0 zone is possible, while the immersed device casing must be installed out of 0 zone
10 Float level switch with float arm casing protecting against contaminations

Level switches (two-term level controllers) ERH-xx-04,-06,-07,-16,-16.1

Description

The limit level signalling or two-term liquid level control in the open or closed pressure tanks. The basic versions, ERH-xx-16 and ERH-xx-16.1 are also produced in explosion-proof atmosphere, corresponding to the class II 1/2G c Ex de IIB T4 Ga/Gb. The level switches can operate in neutral liquids, or aggressive ones not acting on acidproof 1H18N9T (321) steel in marine conditions, while thanks to variety of versions and additional accessories it is possible to adapt the device to specific conditions of the concrete application.

Approvals and certificates

Type	Description	Ingress Protection	ATEX	DNV-GL	LR	BV	PRS	PZH
ERH-xx-04	Standard version	IP66						
ERH-xx-06	Marine version	IP66						
ERH-xx-07	Marine version for operation at full submersion	IP68						
ERH-xx-16	Marine version for operation in explosion risk zones	IP66						
ERH-xx-16.1	Marine version for operation in explosion risk zones at full submersion	IP68						

Types of the level switches

Type	Description	Visual principal drawing - kinds of versions
ERH-01-	Version with steady hysteresis of switching ($10 \mathrm{~mm}, 20 \mathrm{~mm}$ or 30 mm)	
ERH-02-	Version with steady hysteresis of switching ($10 \mathrm{~mm}, 20 \mathrm{~mm}$ or 30 mm) and protection of float stem against contamination	
ERH-03-	Version with adjusted hysteresis of switching ($50 \ldots . .250 \mathrm{~mm}$ or $100 \ldots 400 \mathrm{~mm}$)	
ERH-04-	Version with adjusted hysteresis of switching ($32 . .1350 \mathrm{~mm}$) mounting only from the top	

Float level switches

Technical data

Parameters		ERH-01-	ERH-02-	ERH-03-	ERH-04-	
Hysteresis	ERH-xx-04, -06, -07	10, 20, 30 mm		$\begin{gathered} 50 \ldots 250 \mathrm{~mm} \\ 100 \ldots 400 \mathrm{~mm} \end{gathered}$	$32 . . .1350$ mm	
	ERH-xx-16, -16.1			$50 . . .400 \mathrm{~mm}$		
Repeatability		$\pm 15 \%$		$\pm 15 \% . . . \pm 2 \%$ depending on the range		
Min. medium density		$0,60 \mathrm{~g} / \mathrm{cm}^{3}$				
Max. process pressure	ERH-xx-04, -06, -16	4,0 MPa			1,6 MPa	
	ERH-xx-07, -16.1	0,2 MPa				
Max. medium temperature	ERH-xx-04, -06	$250^{\circ} \mathrm{C}$				
	ERH-xx-16	$100^{\circ} \mathrm{C}$				
	ERH-xx-07, -16.1	$70^{\circ} \mathrm{C}$				
Ambient temperature		$-25 . . .+70^{\circ} \mathrm{C}$				
Ingress Protection	ERH-xx-04, -06, -16	IP66				
	ERH-xx-07, -16.1	IP68				
Weight	ERH-xx-yy	1,8 kg	2,0 kg	2,1 kg	$3,0 \mathrm{~kg}$	
	ERH-xx-yy-K	$2,6 \mathrm{~kg}$	2,8 kg	2,9 kg	$3,8 \mathrm{~kg}$	
	1 mb kabla	0,2 kg				
Explosion-proof	ERH-xx-16, -16.1	〔x\ II 1/2G c Ex de IIB T4 Ga/Gb				
Application		Liquids without contaminations by solid suspensions	Liquids contaminated by solid suspensions	Liquids without contaminations by solid suspensions	Liquids without contaminations and contaminated by solid suspensions	
Electric parameters	ERH-xx-04, -06, -07	AC15* $U \leq 400 \mathrm{~V} ;(50 \ldots 60) \mathrm{Hz} ; \mathrm{I} \leq 10 \mathrm{~A}$; durability of contacts $\geq 3 \times 10^{5}$ DC13** $U \leq 220 \mathrm{~V} ; \mathrm{I}<0,6 \mathrm{~A}$; durability of contacts $\geq 0,3 \times 10^{5}$ Minimum voltage and switching current 5 V ; 5 mA Cross section of connecting cables: one-wire $1 \ldots 2,5 \mathrm{~mm}^{2}$ multi-wire $0,75 \ldots 1,5 \mathrm{~mm}^{2}$				
	ERH-xx-16, -16.1	AC15* $\mathrm{U} \leq 230 \mathrm{~V}(50 \ldots 60) \mathrm{Hz}$; $\mathrm{I} \leq 2,5 \mathrm{~A}$; durability of contacts $\geq 0,85 \times 10^{5}$ DC13** $U \leq 220 \mathrm{~V}$; $\mathrm{I}<0,3 \mathrm{~A}$; durability of contacts $\geq 0,3 \times 10^{5}$ Minimum voltage and switching current 5 V ; 5 mA Cross section of connecting cables: one-wire $1 \mathrm{~mm}^{2}$ multi-wire $1 \mathrm{~mm}^{2}$				
Electric circuit diagram of the controllers ERH-xx-04, ERH-xx-06 and ERH-xx-07		Category of usage: * acc. to PN-EN 60947-5-1, Electromagnet control (>72VA) ** acc. to PN-EN 60947-5-1, Electromagnet control				
		Calculating of the contact durability for an arbitrary load				
Microswitch type 83140 applied in the controllers ERH-xx-04, ERH-xx-06 oraz ERH-xx-07						

Dimensions

ERH-01-

Type	$\mathrm{H}[\mathrm{mm}]$	$\mathrm{L}[\mathrm{mm}]$	Hysteresis [mm]
ERH-01-04-1 ERH-01-06-1 ERH-01-07-1	120	190	10
ERH-01-16-1 ERH-01-16.1-1	140	230	10
ERH-01-04-2 ERH-01-06-2 ERH-01-07-2	140	230	20
ERH-01-16-2 ERH-01-16.1-2	180	305	20
ERH-01-04-3 ERH-1-06-3 ERH-01-07-3	150	255	30
ERH-01-16-3 ERH-01-16.1-3	240	405	30

single L-type (dimensions A and B) double Z-type (dimensions A, B and C)
$A+B=m a x .1000 \mathrm{~mm}$ and $A / B \leq 4$
Options available for the ERH-01- and ERH-02- versions.

Type	$\mathrm{H}[\mathrm{mm}]$	L [mm]	Hysteresis [mm]
ERH-02-04-1 ERH-02-06-1 ERH-02-07-1	120	190	10
ERH-02-16-1 ERH-02-16.1-1	140	230	10
ERH-02-04-2 ERH-02-06-2 ERH-02-07-2	140	230	20
ERH-02-16-2 ERH-02-16.1-2	180	305	20
ERH-02-04-3 ERH-02-06-3 ERH-02-07-3	150	255	30
ERH-02-16-3 ERH-02-16.1-3	240	405	30

ERH-03-

Type	$\mathrm{H}[\mathrm{mm}]$	$\mathrm{L}[\mathrm{mm}]$	Hysteresis [mm]
ERH-03-04-1 ERH-03-06-1 ERH-03-07-1	680	510	$100 \ldots 400$
ERH-03-16 ERH-03-16.1	680	510	$50 \ldots 400$
ERH-03-04-2 ERH-03-06-2 ERH-03-07-2	450	380	$50 \ldots .250$

Float in standard version:
$\begin{array}{lr}\text { - ER2-1101 } & \text { for ERH-01(02)-04-1 } \\ & \text { ERH-01 (02)-06-1 } \\ & E R H-01(02)-07-1\end{array}$

- ER2-1024
for other types of ERH

ERH-04-

Ordering

ERH-xx-04 standard version with IP66
ERH-xx-06 marine version with IP66

ERH-01-04	Two-term level controller		
ERH-02-04	Two-term level controller (with float arm protection against contaminations)		
ERH-01-06	Two-term level controller - marine version		
ERH-02-06	Two-term level controller (with float arm protection against contaminations) - marine version		
	-1	Hys	resis of switching 10 mm
	-2	Hys	resis of switching 20 mm
	-3	Hys	resis of switching 30 mm
	-4-0	Bro	n arm of float $A=125 \mathrm{~mm} B=125 \mathrm{~mm}$
	-4-1	Bro	n arm of float $A=185 \mathrm{~mm} B=80 \mathrm{~mm}$
	-4-2	Bro	n arm of float $A=250 \mathrm{~mm} \mathrm{~B}=125 \mathrm{~mm}$
	-4-3	Bro	n arm of float $A=140 \mathrm{~mm} B=120 \mathrm{~mm}$
	-4-4	Bro	n arm of float $A=100 \mathrm{~mm} \mathrm{~B}=120 \mathrm{~mm}$
	-4-5	Bro	n arm of float $A=120 \mathrm{~mm} \mathrm{~B}=80 \mathrm{~mm}$
	-4-6	Bro	n arm of float $A=150 \mathrm{~mm} B=80 \mathrm{~mm}$
	-4-x	Bro	n arm of float, acc. to the client's request *
		-k	Acidproof version

* the broken arm L-type one must meet the condition of $A+B=m a x .1000 \mathrm{~mm}$ and $A / B=$ max. 4 ; the broken arm Z-type on request

ERH-03-04 ERH-03-06	Two-term level controller Two-term level controller - marine version		
	-1 -2	Adjustable hysteresis of switching in the scope of $100 . . .400 \mathrm{~mm}$ Adjustable hysteresis of switching in the scope of $50 \ldots 250 \mathrm{~mm}$	
		-k	Acidproof version

ERH-04-04	Two-term level controller
ERH-04-04	Two-term level controller - marine version

-k Acidproof version

Example of the controller denotation

The two-term level controller with steady hysteresis of switching 10mm ERH-01-04-1

Ordering
ERH-xx-07 marine version for operation at full submersion with IP68

* the broken arm L-type one must meet the condition of $A+B=m a x .1000 \mathrm{~mm}$ and $A / B=m a x .4$; the broken arm Z-type on request
** other cable lengths on request

ERH-03-07	Two-term level controller			
	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	Adjustable hysteresis of switching in the scope of $100 \ldots 400 \mathrm{~mm}$ Adjustable hysteresis of switching in the scope of $50 \ldots 250 \mathrm{~mm}$		
		-1 -2	Without cable With cable of 3 m length **	
			-k	Acidproof version

** other cable lengths upon the order
ERH-04-07 \quad Two-term level controller

-1	Without cable
-2	With cable of $3 m$ length **
	$-\mathbf{k}$
	Acidproof version

** other cable lengths on request

Example of the controller denotation

The two-term level controller fully acidproof with float arm protection against contaminations with steady hysteresis of switching 30 mm with cable of 15 m length ERH-02-07-3-2-k with 15 m cable

Ordering

ERH-xx-16 marine version in explosion risk zones with IP66 ERH-xx-16.1 marine version for operation at full submersion and in explosion risk zones with IP68

ERH-01-16	Two-term level controller - IP66	
ERH-02-16	Two-term level controller (with float arm protection against contaminations) - IP66	
ERH-01-16.1	Two-term level controller - IP68	
ERH-02-16.1	Two-term level controller (with float arm protection against contaminations) - IP68	
	-1	Hysteresis of switching 10 mm
	-2	Hysteresis of switching 20mm
	-3	Hysteresis of switching 30mm
	-4-0	Broken arm of float $A=125 \mathrm{~mm} B=125 \mathrm{~mm}$
	-4-1	Broken arm of float $A=185 \mathrm{~mm} \mathrm{~B}=80 \mathrm{~mm}$
	-4-2	Broken arm of float $A=250 \mathrm{~mm} \mathrm{~B}=125 \mathrm{~mm}$
	-4-3	Broken arm of float $A=140 \mathrm{~mm} \mathrm{~B}=120 \mathrm{~mm}$
	-4-4	Broken arm of float $A=100 \mathrm{~mm} B=120 \mathrm{~mm}$
	-4-5	Broken arm of float $A=120 \mathrm{~mm} \mathrm{~B}=80 \mathrm{~mm}$
	-4-6	Broken arm of float $A=150 \mathrm{~mm} B=80 \mathrm{~mm}$
	-4-x	Broken arm of float, acc. to the client's request *

* the broken arm L-type one must meet the condition of $A+B=m a x .1000 \mathrm{~mm}$ and $A / B=$ max. 4 ; the broken arm Z-type on request

```
ERH-03-16 Two-term level controller - IP66 (adjustable hysteresis 50...400mm)
ERH-03-16.1 Two-term level controller - IP68 (adjustable hysteresis 50...400mm)
```

```
ERH-04-16 Two-term level controller - IP66 (adjustable hysteresis 50...400mm)
ERH-04-16.1 Two-term level controller - IP68 (adjustable hysteresis 50...400mm)
```


Example of the controller denotation

The two-term level controller with adjustable hysteresis of switching $50 . . .400 \mathrm{~mm}$ ERH-03-16

Testing devices (screwed or welded)

Description

The testing devices (testers) are designed for mechanical checking of the controller operation correctness, without necessity of dismounting of the device from the tank.

The testers can cooperate with the level switches in version ERH-01- or ERH-03-.

Tester for separable mounting (screwed) type ER3-1560

Tester for steady mounting (welded) type ER3-1495

Fixing
 and reduction flanges

Description

The fixing flanges or reduction flanges are used in cases when the tank counter-flange has the connection dimensions different from the standard flange of controller $92 \times 92 \mathrm{~mm}$. The fixing flanges can be used for all the versions of two-term controllers.

Application of the reduction flanges is limited by their width which influences the float operation range.

Fixing flange DN80 type ER2-1587
Material
1H18N9T stainless steel

Reduction flange type ER2-1642

Material St3S steel

Accessories of float level switches

Counter-flange and mounting chamber

Description

The counter-flange and the mounting chamber are the mechanical elements designed for permanent mounting to the tank and which make possible to mount the controller.

The counter-flange allows to mount the controller inside the tank. The mounting chamber is applied for installing on the pipelines and tanks of small dimensions, and also in case when presence of controller inside the tank is not indicated, or possible for example due to steady elements which can be found in a liquid and damage the controller float.

Counter-flange type ER2-1646

Material

$$
\begin{aligned}
& \text { St3S steel } \\
& \text { 1H18N9T stainless steel }
\end{aligned}
$$

(ER2-1646-1)
(ER2-1646-2)

The fixing elements are enclosed to the counter-flange.
Mounting chamber type ER3-1631

Material
Weight

boiler tube R35 and St3S steel $6,5 \mathrm{~kg}$

Ordering

One should give the name and type in his order, e. g. tester ER3-1560

Level
 Description

switches
ERH-x x-20

Level signalling of the medium having minimum density $0,70 \mathrm{~g} / \mathrm{cm}^{3}$. The basic version, mounted from the top, is available with $92 \times 92 \mathrm{~mm}$ flange connector, head made from aluminium alloy and $\mathrm{M} 20 \times 1,5$ cable gland with casing protection degree IP68. Other versions of mechanic or threaded flange connectors - according to the ordering code. There is also a possibility of ordering the level switch with connector according to the requirements, e. g. with flange acc. to DIN or ANSI standard. The level switch can also be ordered in version fully made from acidproof steel, with additional cover protecting the float, as well as with certified cable of optional length.

Technical data

Min. medium density
$0,70 \mathrm{~g} / \mathrm{cm}^{3}$
$1,0 \mathrm{MPa}$
Max. process pressure
Ambient temperature * Medium temperature *
Switching points
Switching rate **
Hysteresis
Ingress Protection
Type of temperature sensor
Explosion-proof
Material of the wet part
Material of the dry part
Floating element
Protection tube
Weight of the level switch ***
Weight of the cable

1,0 MPa
$-25 \ldots+80^{\circ} \mathrm{C}$
$-25 \ldots+150^{\circ} \mathrm{C}$
1,2 or 3
230 V AC; 100VA; 1A
230 V DC; 50W; 0,5A
10 mm
IP68
Pt100
© Ex II $^{\text {I }}$ G Ex db IIC T3 \div T6 Gb acidproof steel 316L
aluminium alloy or 316SS
$\Phi 40 \times 35 \mathrm{~mm}$
Ф60
$0,3 \ldots 8,5 \mathrm{~kg}$
$0,15 \mathrm{~kg} / \mathrm{mb}$

Temperatures for Ex version

Class	Ambient temp.	Medium temp.
T6	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+85^{\circ} \mathrm{C}$
T 5	$-25 \ldots+65^{\circ} \mathrm{C}$	$-25 \ldots+100^{\circ} \mathrm{C}$
T4	$-25 \ldots+80^{\circ} \mathrm{C}$	$-25 \ldots+135^{\circ} \mathrm{C}$
T3	$-25 \ldots+80^{\circ} \mathrm{C}$	$-25 \ldots+150^{\circ} \mathrm{C}$

* temperatures for Ex version in the table
** maximum parameters of the reed relays apply to the loads of resistance character; for inductive loads such as relay coils, one should apply adequate protecting systems (detailed pieces of information in Operation Manual)
*** it depends on the version

Design

Examples of level switches

Magnetic level switches

Dimensions

The dimensions A, B and C depend on the ordered version. For one signalling point: A min. 50 mm , A max. 1000 mm . For two signalling points: A min. 150 mm , A max 1000 mm ; B min. 50 mm , B max 900 mm ; ($A-B$) min. 100 mm . For three signalling points: A min. $250 \mathrm{~mm}, A \max 1000 \mathrm{~mm}$; B min. 150 mm , B max 900 mm ; C min. 50 mm , C max 800 mm ; (A-B) min. 100 mm , (B-C) min. 100 mm .

Dimensions of flange connectors

The level switch can be equipped with special gland, marked ER2-1593, which gives possibility of mounting the casing tube of cable (it is not the equipment element). In such version the controller can be ordered exclusively with cable.
Gland from the side of head M20x1,5 thread

Conical thread $3 / 4$ " for mounting of cable casing tube

Electric connector ER2-1593

Flanges for special version *

Flange marking	Outside diameter	Number of holes	Hole diameter	Spacing of holes
CON-14/340	Ô 130mm		Ô 15mm	Ô 105mm
CON-14/346	Ô 160mm	4	Ô 14mm	Ô 130mm
CON-14/290	Ô 170mm	8	Ô 14mm	Ô 138mm
CON-14/347	Ô 190mm	4	Ô 18mm	Ô 150mm
CON-14/348	Ô 220mm	8	Ô 18mm	Ô 180mm

* other versions of flanges after mutual agreement
ERH-06-20

Electric connectors

Magnetic level switches

Electric diagram

One switching point (one float)

The diagram shows state of reed relay at minimum level of medium - magnetic field of the float interacts the reed relay.
Reed relay without activation of magnetic field of the float at so-called normal state is configured as normally open NO.

Three switching points (two floats) *

The diagram shows state of reed relays at minimum level of medium - magnetic fields of the float interact the reed relays K2 and K3.
Reed relays without activation of magnetic field of the float at so-called normal state are configured as:
K1 - normally open NO
K2 - normally closed NC
K3 - normally closed NC

Two switching point (one float)*

The diagram shows state of reed relays at minimum level of medium - magnetic fields of the float interact the reed relay K2.
Reed relays without activation of magnetic field of the float at so-called normal state are configured as:
K1 - normally open NO
K2 - normally closed NC

* the status of the reed in the zone of action of the float magnet
** the status of the reed outside the operation of the float magnet

Option with temperature sensor Pt100

* the status of the reed in the zone of action of the float magnet
** the status of the reed outside the operation of the float magnet

[^0]
Magnetic level switches

Magnetic level switch with mounting clamp in mini version

Features of level switch in mini version:

- Realized functions: close, open, switched
- Switching point - approximately in the middle of tube length
- Fully made from acidproof steel
- Possibility of easy mounting, e. g. by means of mounting clamp (2" clamp is attached to the complete set)

Electric diagram

(Standard: cable $3 \mathrm{~m} ; 0,75 \mathrm{~mm}^{2} \times 3$)

Dimensions

ERH-11-20/H-2

ERH-11-20/H-2-Y

Magnetic level switches

Ordering

ERH-02-20 Level switch with flange connector $\square 92 \mathrm{~mm}$ (4 holes Ô14/Ô92mm)
ERH-04-20 Level switch with flange connector Ô120 (6 holes Ô12/Ô100mm)
ERH-06-20 Level switch with flange connector DN80 PN40 (8 holes Ô18/Ô160mm)
ERH-09-20 Level switch with threaded connector 2" NPT
ERH-XX-20
Level switch with connector according to the order

IA/O/0	1 switching point (give value A in mm) *
IA/B/O	2 switching points (give values A and B in mm) *
IA/B/C	3 switching points (give values A, B and C in mm)

-1 Electric connector cable gland IP68 - not available for Ex
-2 Electric connector cable gland IP68 with cable 3m length ** - not available for Ex
-3 Electric connector ER2-1593 with cable 3m length ** - not available for Ex
-4 Electric connector cable gland IP68 ATEX Ex D IIC
-5 Electric connector without cable gland (thread M20×1,5)
Additional options of version
-K Fully acidproof steel version ***
-P With protection of float - not available for E_{x}
-T With Pt100 sensor - not available for Ex
-PT With Pt100 sensor and protection of float - not available for Ex
-KP Fully acidproof steel version with protection of float ***
-KT Fully acidproof steel version with Pt100 sensor ***
-KPT Fully acidproof steel version with protection of float and Pt100 sensor ***
/Ex Explosion-proof version $\left.\sum_{x}\right\rangle$ II 2G Ex db IIC T3 \div T6 Gb

ERH-11-20	Level switch with mounting clamp (mini version - fully acidproof steel)			
	/H	1 switching point approximately in the middle of tube length		
		-2	Electric connector with cable 3m **	
			Additional options of version	
			$\begin{aligned} & -Y \\ & -P \\ & -Y P \end{aligned}$	With yoke / shackle With protection of float With yoke/shackle and protection of float

[^1]Example of the level switch denotation
Magnetic level switch with flange connector Ô120 (6 holes Ô12/Ô100mm), one switch point $A=200 \mathrm{~mm}$, electric connector IP68 with cable 3m length, fully acidproof steel version with protection tube of float
ERH-04-20/200/0/0-2-KP

APLISENS S.A. (PL) 03-192 Warsz wa ut. Moretowa 7
tel. +48228140777 fax +48 228140778 aplisens@aplisens.pl www.aplisens.pl

Production \& Service:

APLISENS S.A. O. CONTROLMATICA (PL) 63-400 Ostrów Wiekopolski ul. Krotoszyńska 35 controlmatica@control matica.com.pl www.controlmatica.com. pl

[^0]: * there is a possibility of other than given configurations of leadouts - after agreement

[^1]: * the dimensions A, B and C depend on the ordered version; for one signalling point: A min. 50mm, A max. 1000mm; for two signalling points: A min. 150mm, A max $1000 \mathrm{~mm} ; B \mathrm{~min} .50 \mathrm{~mm}, B \max 900 \mathrm{~mm} ;(A-B) \mathrm{min} .100 \mathrm{~mm}$; for three signalling points: A min. 250 mm , A max 1000 mm ; B min. 150 mm , B max 900 mm ; C min. $50 \mathrm{~mm}, C$ max $800 \mathrm{~mm} ;(A-B) \min .100 \mathrm{~mm},(B-C) \mathrm{min} .100 \mathrm{~mm} ;$ range above 1000 mm and 4 switching points on request
 ** other lengths of cable upon the order
 *** for controllers designed for operation in full submersion - we recommend fully acidproof steel versions

